Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon
نویسندگان
چکیده
Although monocrystalline silicon reveals strong anisotropic properties on various crystal planes, the friction-induced nanofabrication can be successfully realized on Si(100), Si(110), and Si(111) surfaces. Under the same loading condition, the friction-induced hillock produced on Si(100) surface is the highest, while that produced on Si(111) surface is the lowest. The formation mechanism of hillocks on various silicon crystal planes can be ascribed to the structural deformation of crystal matrix during nanoscratching. The silicon crystal plane with lower elastic modulus can lead to larger pressed volume during sliding, facilitating more deformation in silicon matrix and higher hillock. Meanwhile, the structures of Si-Si bonds on various silicon crystal planes show a strong effect on the hillock formation. High density of dangling bonds can cause much instability of silicon surface during tip disturbing, which results in the formation of more amorphous silicon and high hillock during the friction process. The results will shed new light on nanofabrication of monocrystalline silicon.
منابع مشابه
Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask
A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) ...
متن کاملEffect of crystal plane orientation on tribochemical removal of monocrystalline silicon
The effect of crystal plane orientation on tribochemical removal of monocrystalline silicon was investigated using an atomic force microscope. Experimental results indicated that the tribochemical removal of silicon by SiO2 microsphere presented strong crystallography-induced anisotropy. Further analysis suggested that such anisotropic tribochemical removal of silicon was not dependent on the c...
متن کاملTemperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching
Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is...
متن کاملCORRELATION BETWEEN CRYSTAL ORIENTATION AND NANOGAP FORMED BY ELECTRO MIGRATION
Effect of electro migration on crystal structures of platinum nanowire (Nano bridge) during Nano-gap formation is investigated by means of Transmission Electron Microscopy (TEM). Selected area diffraction patterns as well as bright field images are used for this investigation. There were severely recessions in the polycrystalline Nano bridge and crystal structures around the nanogap changed ...
متن کاملMolecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature
Molecular dynamics simulations of nanoindentation tests on monocrystalline silicon (010) surface were conducted to investigate the mechanical properties and deformation mechanism from cryogenic temperature being 10 K to room temperature being 300 K. Furthermore, the load-displacement curves were obtained and the phase transformation was investigated at different temperatures. The results show t...
متن کامل